舉報

會員
Pig Design Patterns
最新章節:
Index
Acomprehensivepracticalguidethatwalksyouthroughthemultiplestagesofdatamanagementinenterpriseandgivesyounumerousdesignpatternswithappropriatecodeexamplestosolvefrequentproblemsineachofthesestages.ThechaptersareorganizedtomimickthesequentialdataflowevidencedinAnalyticsplatforms,buttheycanalsobereadindependentlytosolveaparticulargroupofproblemsintheBigDatalifecycle.IfyouareanexperienceddeveloperwhoisalreadyfamiliarwithPigandislookingforausecasestandpointwheretheycanrelatetotheproblemsofdataingestion,profiling,cleansing,transforming,andegressingdataencounteredintheenterprises.KnowledgeofHadoopandPigisnecessaryforreaderstograsptheintricaciesofPigdesignpatternsbetter.
目錄(73章)
倒序
- coverpage
- Pig Design Patterns
- Credits
- Foreword
- About the Author
- Acknowledgments
- About the Reviewers
- www.PacktPub.com
- Support files eBooks discount offers and more
- Preface
- What this book covers
- What you need for this book
- Who this book is for
- Conventions
- Reader feedback
- Customer support
- Chapter 1. Setting the Context for Design Patterns in Pig
- Understanding design patterns
- The scope of design patterns in Pig
- Hadoop demystified – a quick reckoner
- Pig – a quick intro
- Understanding Pig through the code
- Summary
- Chapter 2. Data Ingest and Egress Patterns
- The context of data ingest and egress
- Types of data in the enterprise
- Ingest and egress patterns for multistructured data
- The ingress and egress patterns for the NoSQL data
- The ingress and egress patterns for structured data
- The ingress and egress patterns for semi-structured data
- JSON ingress and egress patterns
- Summary
- Chapter 3. Data Profiling Patterns
- Data profiling for Big Data
- Rationale for using Pig in data profiling
- The data type inference pattern
- The basic statistical profiling pattern
- The pattern-matching pattern
- The string profiling pattern
- The unstructured text profiling pattern
- Summary
- Chapter 4. Data Validation and Cleansing Patterns
- Data validation and cleansing for Big Data
- Choosing Pig for validation and cleansing
- The constraint validation and cleansing design pattern
- The regex validation and cleansing design pattern
- The corrupt data validation and cleansing design pattern
- The unstructured text data validation and cleansing design pattern
- Summary
- Chapter 5. Data Transformation Patterns
- Data transformation processes
- The structured-to-hierarchical transformation pattern
- The data normalization pattern
- The data integration pattern
- The aggregation pattern
- The data generalization pattern
- Summary
- Chapter 6. Understanding Data Reduction Patterns
- Data reduction – a quick introduction
- Data reduction considerations for Big Data
- Dimensionality reduction – the Principal Component Analysis design pattern
- Numerosity reduction – the histogram design pattern
- Numerosity reduction – sampling design pattern
- Numerosity reduction – clustering design pattern
- Summary
- Chapter 7. Advanced Patterns and Future Work
- The clustering pattern
- The topic discovery pattern
- The natural language processing pattern
- The classification pattern
- Future trends
- Summary
- Index 更新時間:2021-07-16 12:08:11
推薦閱讀
- 過程控制工程及仿真
- Getting Started with Containerization
- Maya 2012從入門到精通
- Mastering Elastic Stack
- Data Wrangling with Python
- JavaScript典型應用與最佳實踐
- 數據庫系統原理及應用教程(第5版)
- 面向對象程序設計綜合實踐
- 悟透AutoCAD 2009案例自學手冊
- Excel 2010函數與公式速查手冊
- 人工智能技術入門
- C++程序設計基礎(上)
- Visual Studio 2010 (C#) Windows數據庫項目開發
- 數字多媒體技術基礎
- 與人共融機器人的關節力矩測量技術
- 自適應學習:人工智能時代的教育革命
- 中老年人學電腦與上網
- Flash CS3動畫制作
- Flink內核原理與實現
- Geospatial Data Science Quick Start Guide
- 嵌入式系統原理與接口技術
- 機器人力觸覺感知技術
- TensorFlow從零開始學
- Python數據挖掘入門與實踐
- 監控與數據采集(SCADA)系統及其應用
- Salesforce CRM Admin Cookbook
- 對抗機器學習:機器學習系統中的攻擊和防御
- 數據庫應用基礎:Access 2007
- JavaScript機器人:用Raspberry Pi、Arduino和BeagleBone構建NodeBots
- 人人可懂的數據科學