首頁(yè) > 計(jì)算機(jī)網(wǎng)絡(luò) >
編程語(yǔ)言與程序設(shè)計(jì)
> Natural Language Processing with Java and LingPipe Cookbook最新章節(jié)目錄
目錄(98章)
倒序
- 封面
- 版權(quán)頁(yè)
- Credits
- About the Authors
- About the Reviewers
- www.PacktPub.com
- Support files eBooks discount offers and more
- Preface
- What this book covers
- What you need for this book
- Who this book is for
- Conventions
- Reader feedback
- Customer support
- Chapter 1. Simple Classifiers
- Introduction
- Deserializing and running a classifier
- Getting confidence estimates from a classifier
- Getting data from the Twitter API
- Applying a classifier to a .csv file
- Evaluation of classifiers – the confusion matrix
- Training your own language model classifier
- How to train and evaluate with cross validation
- Viewing error categories – false positives
- Understanding precision and recall
- How to serialize a LingPipe object – classifier example
- Eliminate near duplicates with the Jaccard distance
- How to classify sentiment – simple version
- Chapter 2. Finding and Working with Words
- Introduction
- Introduction to tokenizer factories – finding words in a character stream
- Combining tokenizers – lowercase tokenizer
- Combining tokenizers – stop word tokenizers
- Using Lucene/Solr tokenizers
- Using Lucene/Solr tokenizers with LingPipe
- Evaluating tokenizers with unit tests
- Modifying tokenizer factories
- Finding words for languages without white spaces
- Chapter 3. Advanced Classifiers
- Introduction
- A simple classifier
- Language model classifier with tokens
- Na?ve Bayes
- Feature extractors
- Logistic regression
- Multithreaded cross validation
- Tuning parameters in logistic regression
- Customizing feature extraction
- Combining feature extractors
- Classifier-building life cycle
- Linguistic tuning
- Thresholding classifiers
- Train a little learn a little – active learning
- Annotation
- Chapter 4. Tagging Words and Tokens
- Introduction
- Interesting phrase detection
- Foreground- or background-driven interesting phrase detection
- Hidden Markov Models (HMM) – part-of-speech
- N-best word tagging
- Confidence-based tagging
- Training word tagging
- Word-tagging evaluation
- Conditional random fields (CRF) for word/token tagging
- Modifying CRFs
- Chapter 5. Finding Spans in Text – Chunking
- Introduction
- Sentence detection
- Evaluation of sentence detection
- Tuning sentence detection
- Marking embedded chunks in a string – sentence chunk example
- Paragraph detection
- Simple noun phrases and verb phrases
- Regular expression-based chunking for NER
- Dictionary-based chunking for NER
- Translating between word tagging and chunks – BIO codec
- HMM-based NER
- Mixing the NER sources
- CRFs for chunking
- NER using CRFs with better features
- Chapter 6. String Comparison and Clustering
- Introduction
- Distance and proximity – simple edit distance
- Weighted edit distance
- The Jaccard distance
- The Tf-Idf distance
- Using edit distance and language models for spelling correction
- The case restoring corrector
- Automatic phrase completion
- Single-link and complete-link clustering using edit distance
- Latent Dirichlet allocation (LDA) for multitopic clustering
- Chapter 7. Finding Coreference Between Concepts/People
- Introduction
- Named entity coreference with a document
- Adding pronouns to coreference
- Cross-document coreference
- The John Smith problem
- Index 更新時(shí)間:2021-08-05 17:13:04
推薦閱讀
- Data Visualization with D3 4.x Cookbook(Second Edition)
- Web Development with Django Cookbook
- Java 9 Programming Blueprints
- 我的第一本算法書
- Git高手之路
- 深入淺出Android Jetpack
- Koa開發(fā):入門、進(jìn)階與實(shí)戰(zhàn)
- C語(yǔ)言程序設(shè)計(jì)
- Python大學(xué)實(shí)用教程
- Visual FoxPro 6.0程序設(shè)計(jì)
- QGIS 2 Cookbook
- 分布式架構(gòu)原理與實(shí)踐
- 會(huì)當(dāng)凌絕頂:Java開發(fā)修行實(shí)錄
- Mastering JavaScript
- Learning D
- Java程序設(shè)計(jì)實(shí)用教程(第2版)
- Android應(yīng)用程序設(shè)計(jì)
- Android 5從入門到精通
- 面向物聯(lián)網(wǎng)的Android應(yīng)用開發(fā)與實(shí)踐
- JavaScript程序設(shè)計(jì)實(shí)例教程(第2版)
- Instant JRebel
- Python機(jī)器學(xué)習(xí)(原書第3版)
- Developing Multi:Platform Apps with Visual Studio Code
- Swift Essentials
- NGINX High Performance
- 高效C/C++調(diào)試
- Java+OpenCV高效入門
- 小猴編程:Scratch 3.0趣味少兒編程(提高篇)
- Building a Web Application with PHP and MariaDB:A Reference Guide
- Advanced Java? EE Development with WildFly?