目錄(96章)
倒序
- 封面
- 版權信息
- Credits
- About the Author
- About the Reviewers
- www.PacktPub.com
- Preface
- Chapter 1. Getting Started with Data Mining
- Introducing data mining
- Using Python and the IPython Notebook
- A simple affinity analysis example
- A simple classification example
- What is classification?
- Summary
- Chapter 2. Classifying with scikit-learn Estimators
- scikit-learn estimators
- Preprocessing using pipelines
- Pipelines
- Summary
- Chapter 3. Predicting Sports Winners with Decision Trees
- Loading the dataset
- Decision trees
- Sports outcome prediction
- Random forests
- Summary
- Chapter 4. Recommending Movies Using Affinity Analysis
- Affinity analysis
- The movie recommendation problem
- The Apriori implementation
- Extracting association rules
- Summary
- Chapter 5. Extracting Features with Transformers
- Feature extraction
- Feature selection
- Feature creation
- Creating your own transformer
- Summary
- Chapter 6. Social Media Insight Using Naive Bayes
- Disambiguation
- Text transformers
- Naive Bayes
- Application
- Summary
- Chapter 7. Discovering Accounts to Follow Using Graph Mining
- Loading the dataset
- Finding subgraphs
- Summary
- Chapter 8. Beating CAPTCHAs with Neural Networks
- Artificial neural networks
- Creating the dataset
- Training and classifying
- Improving accuracy using a dictionary
- Summary
- Chapter 9. Authorship Attribution
- Attributing documents to authors
- Function words
- Support vector machines
- Character n-grams
- Using the Enron dataset
- Summary
- Chapter 10. Clustering News Articles
- Obtaining news articles
- Extracting text from arbitrary websites
- Grouping news articles
- Online learning
- Summary
- Chapter 11. Classifying Objects in Images Using Deep Learning
- Object classification
- Application scenario and goals
- Deep neural networks
- GPU optimization
- Setting up the environment
- Application
- Summary
- Chapter 12. Working with Big Data
- Big data
- Application scenario and goals
- MapReduce
- Application
- Summary
- Appendix A. Next Steps…
- Chapter 1 – Getting Started with Data Mining
- Chapter 2 – Classifying with scikit-learn Estimators
- Chapter 3: Predicting Sports Winners with Decision Trees
- Chapter 4 – Recommending Movies Using Affinity Analysis
- Chapter 5 – Extracting Features with Transformers
- Chapter 6 – Social Media Insight Using Naive Bayes
- Chapter 7 – Discovering Accounts to Follow Using Graph Mining
- Chapter 8 – Beating CAPTCHAs with Neural Networks
- Chapter 9 – Authorship Attribution
- Chapter 10 – Clustering News Articles
- Chapter 11: Classifying Objects in Images Using Deep Learning
- Chapter 12 – Working with Big Data
- More resources
- Index 更新時間:2021-07-16 13:31:05
推薦閱讀
- CMDB分步構建指南
- R語言編程指南
- x86匯編語言:從實模式到保護模式(第2版)
- C語言程序設計實踐教程
- Learning Firefox OS Application Development
- TypeScript實戰指南
- Mockito Essentials
- ASP.NET求職寶典
- Instant Automapper
- Java EE 8 and Angular
- 計算機系統解密:從理解計算機到編寫高效代碼
- Flask開發Web搜索引擎入門與實戰
- Java 7 Concurrency Cookbook
- JBoss AS 7 Development
- Web前端開發技術實踐指導教程
- Scala編程(第4版)
- Java核心技術速學版(第3版)
- D Cookbook
- 軟件定義網絡:基于OpenFlow的SDN技術揭秘
- 鯤鵬架構入門與實戰
- Mastering Grunt
- Mastering Apache Spark
- Hands-On Serverless Applications with Kotlin
- 數據結構(C語言版)(第2版)
- 區塊鏈應用指南:方法與實踐
- 陪孩子像搭積木一樣學編程(Python真好玩+Scratch趣味編程)(全2冊)
- 點睛:ActionScript3.0游戲互動編程
- Mastering Machine Learning with scikit-learn(Second Edition)
- MariaDB Essentials
- Hibernate逍遙游記