首頁(yè) > 計(jì)算機(jī)網(wǎng)絡(luò) >
編程語(yǔ)言與程序設(shè)計(jì)
> Mastering Machine Learning with R最新章節(jié)目錄
目錄(103章)
倒序
- coverpage
- Mastering Machine Learning with R
- Credits
- About the Author
- About the Reviewers
- www.PacktPub.com
- Support files eBooks discount offers and more
- Preface
- Machine learning defined
- Machine learning caveats
- Failure to engineer features
- Overfitting and underfitting
- Causality
- What this book covers
- What you need for this book
- Who this book is for
- Conventions
- Reader feedback
- Customer support
- Chapter 1. A Process for Success
- The process
- Business understanding
- Data understanding
- Data preparation
- Modeling
- Evaluation
- Deployment
- Algorithm flowchart
- Summary
- Chapter 2. Linear Regression – The Blocking and Tackling of Machine Learning
- Univariate linear regression
- Multivariate linear regression
- Other linear model considerations
- Summary
- Chapter 3. Logistic Regression and Discriminant Analysis
- Classification methods and linear regression
- Logistic regression
- Model selection
- Summary
- Chapter 4. Advanced Feature Selection in Linear Models
- Regularization in a nutshell
- Business case
- Modeling and evaluation
- Model selection
- Summary
- Chapter 5. More Classification Techniques – K-Nearest Neighbors and Support Vector Machines
- K-Nearest Neighbors
- Support Vector Machines
- Business case
- Feature selection for SVMs
- Summary
- Chapter 6. Classification and Regression Trees
- Introduction
- An overview of the techniques
- Business case
- Summary
- Chapter 7. Neural Networks
- Neural network
- Deep learning a not-so-deep overview
- Business understanding
- Data understanding and preparation
- Modeling and evaluation
- An example of deep learning
- Summary
- Chapter 8. Cluster Analysis
- Hierarchical clustering
- K-means clustering
- Gower and partitioning around medoids
- Data understanding and preparation
- Modeling and evaluation
- Summary
- Chapter 9. Principal Components Analysis
- An overview of the principal components
- Modeling and evaluation
- Summary
- Chapter 10. Market Basket Analysis and Recommendation Engines
- An overview of a market basket analysis
- Business understanding
- Data understanding and preparation
- Modeling and evaluation
- An overview of a recommendation engine
- Business understanding and recommendations
- Data understanding preparation and recommendations
- Modeling evaluation and recommendations
- Summary
- Chapter 11. Time Series and Causality
- Univariate time series analysis
- Modeling and evaluation
- Summary
- Chapter 12. Text Mining
- Text mining framework and methods
- Topic models
- Modeling and evaluation
- Summary
- Appendix A. R Fundamentals
- Introduction
- Getting R up and running
- Using R
- Data frames and matrices
- Summary stats
- Installing and loading the R packages
- Summary
- Index 更新時(shí)間:2021-07-09 21:28:39
推薦閱讀
- SPSS數(shù)據(jù)挖掘與案例分析應(yīng)用實(shí)踐
- 深度實(shí)踐OpenStack:基于Python的OpenStack組件開發(fā)
- WildFly:New Features
- 嵌入式軟件系統(tǒng)測(cè)試:基于形式化方法的自動(dòng)化測(cè)試解決方案
- Kubernetes實(shí)戰(zhàn)
- 圖解Java數(shù)據(jù)結(jié)構(gòu)與算法(微課視頻版)
- Python 深度學(xué)習(xí)
- 程序員數(shù)學(xué):用Python學(xué)透線性代數(shù)和微積分
- Python編程與幾何圖形
- TypeScript項(xiàng)目開發(fā)實(shí)戰(zhàn)
- Learning Python by Building Games
- 新一代SDN:VMware NSX 網(wǎng)絡(luò)原理與實(shí)踐
- Mastering Python Design Patterns
- Python編程:從入門到實(shí)踐(第3版)
- QlikView Unlocked
- Go語(yǔ)言入門經(jīng)典
- 計(jì)算語(yǔ)言學(xué)導(dǎo)論
- Python預(yù)測(cè)之美:數(shù)據(jù)分析與算法實(shí)戰(zhàn)(雙色)
- Java并發(fā)實(shí)現(xiàn)原理:JDK源碼剖析
- SQL Server 2008實(shí)用教程(第3版)
- Wearable:Tech Projects with the Raspberry Pi Zero
- 川哥教你Spring Boot 2實(shí)戰(zhàn)
- Abaqus GUI程序開發(fā)指南(Python語(yǔ)言)
- AngularJS Test:driven Development
- Infusionsoft Cookbook
- C++入門很輕松(微課超值版)
- Xamarin Essentials
- Python全棧開發(fā):高階編程
- ASP.NET 4.0編程技術(shù)大全
- 游戲設(shè)計(jì)入門:理解玩家思維