目錄(103章)
倒序
- coverpage
- Mastering Machine Learning with R
- Credits
- About the Author
- About the Reviewers
- www.PacktPub.com
- Support files eBooks discount offers and more
- Preface
- Machine learning defined
- Machine learning caveats
- Failure to engineer features
- Overfitting and underfitting
- Causality
- What this book covers
- What you need for this book
- Who this book is for
- Conventions
- Reader feedback
- Customer support
- Chapter 1. A Process for Success
- The process
- Business understanding
- Data understanding
- Data preparation
- Modeling
- Evaluation
- Deployment
- Algorithm flowchart
- Summary
- Chapter 2. Linear Regression – The Blocking and Tackling of Machine Learning
- Univariate linear regression
- Multivariate linear regression
- Other linear model considerations
- Summary
- Chapter 3. Logistic Regression and Discriminant Analysis
- Classification methods and linear regression
- Logistic regression
- Model selection
- Summary
- Chapter 4. Advanced Feature Selection in Linear Models
- Regularization in a nutshell
- Business case
- Modeling and evaluation
- Model selection
- Summary
- Chapter 5. More Classification Techniques – K-Nearest Neighbors and Support Vector Machines
- K-Nearest Neighbors
- Support Vector Machines
- Business case
- Feature selection for SVMs
- Summary
- Chapter 6. Classification and Regression Trees
- Introduction
- An overview of the techniques
- Business case
- Summary
- Chapter 7. Neural Networks
- Neural network
- Deep learning a not-so-deep overview
- Business understanding
- Data understanding and preparation
- Modeling and evaluation
- An example of deep learning
- Summary
- Chapter 8. Cluster Analysis
- Hierarchical clustering
- K-means clustering
- Gower and partitioning around medoids
- Data understanding and preparation
- Modeling and evaluation
- Summary
- Chapter 9. Principal Components Analysis
- An overview of the principal components
- Modeling and evaluation
- Summary
- Chapter 10. Market Basket Analysis and Recommendation Engines
- An overview of a market basket analysis
- Business understanding
- Data understanding and preparation
- Modeling and evaluation
- An overview of a recommendation engine
- Business understanding and recommendations
- Data understanding preparation and recommendations
- Modeling evaluation and recommendations
- Summary
- Chapter 11. Time Series and Causality
- Univariate time series analysis
- Modeling and evaluation
- Summary
- Chapter 12. Text Mining
- Text mining framework and methods
- Topic models
- Modeling and evaluation
- Summary
- Appendix A. R Fundamentals
- Introduction
- Getting R up and running
- Using R
- Data frames and matrices
- Summary stats
- Installing and loading the R packages
- Summary
- Index 更新時間:2021-07-09 21:28:39
推薦閱讀
- Learning Microsoft Windows Server 2012 Dynamic Access Control
- JavaScript前端開發模塊化教程
- Visual C++程序設計教程
- Kali Linux Web Penetration Testing Cookbook
- x86匯編語言:從實模式到保護模式(第2版)
- Python編程完全入門教程
- MATLAB定量決策五大類問題
- Learn React with TypeScript 3
- Java程序設計:原理與范例
- Visual Basic程序設計習題與上機實踐
- Python入門很輕松(微課超值版)
- jQuery技術內幕:深入解析jQuery架構設計與實現原理
- Android Sensor Programming By Example
- 寫給青少年的人工智能(Python版·微課視頻版)
- 交互設計師成長手冊:從零開始學交互
- Laravel Design Patterns and Best Practices
- Less Web Development Cookbook
- 微信公眾平臺開發最佳實踐
- 軟件定義存儲:原理、實踐與生態
- Microsoft Hyper-V PowerShell Automation
- C#多線程編程實戰
- 區塊鏈智能合約安全入門
- Drush for Developers(Second Edition)
- Helm學習指南:Kubernetes上的應用程序管理
- 教孩子學Python編程
- Complete Virtual Reality and Augmented Reality Development with Unity
- Python高并發與高性能編程:原理與實踐
- 玩轉Django 2.0
- Python編程課
- Android開發寶典