目錄(270章)
倒序
- cover
- Title Page
- Copyright
- Matplotlib 2.x By Example
- Credits
- About the Authors
- About the Reviewer
- www.PacktPub.com
- Why subscribe?
- Customer Feedback
- Preface
- What this book covers
- What you need for this book
- Who this book is for
- Conventions
- Reader feedback
- Customer support
- Downloading the example code
- Downloading the color images of this book
- Errata
- Piracy
- Questions
- Hello Plotting World!
- Hello Matplotlib!
- What is Matplotlib?
- What's new in Matplotlib 2.0?
- Changes to the default style
- Color cycle
- Colormap
- Scatter plot
- Legend
- Line style
- Patch edges and color
- Fonts
- Improved functionality or performance
- Improved color conversion API and RGBA support
- Improved image support
- Faster text rendering
- Change in the default animation codec
- Changes in settings
- New configuration parameters (rcParams)
- Style parameter blacklist
- Change in Axes property keywords
- Setting up the plotting environment
- Setting up Python
- Windows
- Using Python
- macOS
- Linux
- Installing the Matplotlib dependencies
- Installing the pip Python package manager
- Installing Matplotlib with pip
- Setting up Jupyter notebook
- Why Jupyter notebook?
- Installing Jupyter notebook
- Using Jupyter notebook
- Starting a Jupyter notebook session
- Editing and running code
- Jotting down notes in Markdown mode
- Viewing Matplotlib plots
- Saving the notebook project
- All set to go!
- Plotting our first graph
- Loading data for plotting
- Data structures
- List
- Numpy array
- pandas dataframe
- Loading data from files
- The basic Python way
- The Numpy way
- The pandas way
- Importing the Matplotlib pyplot module
- Plotting a curve
- Viewing the figure
- Saving the figure
- Setting the output format
- PNG (Portable Network Graphics)
- PDF (Portable Document Format)
- SVG (Scalable Vector Graphics)
- Post (Postscript)
- Adjusting the resolution
- Summary
- Figure Aesthetics
- Basic structure of a Matplotlib figure
- Glossary of objects in a Matplotlib figure
- Setting colors in Matplotlib
- Single letters for basic built-in colors
- Names of standard HTML colors
- RGB or RGBA color code
- Hexadecimal color code
- Depth of grayscale
- Using specific colors in the color cycle
- Aesthetic and readability considerations
- Adjusting text formats
- Font
- Font appearance
- Font size
- Font style
- Font weight
- Font family
- Checking available fonts in system
- LaTeX support
- Customizing lines and markers
- Lines
- Choosing dash patterns
- Setting capstyle of dashes
- Advanced example
- Markers
- Choosing markers
- Adjusting marker sizes
- Customizing grids ticks and axes
- Grids
- Adding grids
- Ticks
- Adjusting tick spacing
- Removing ticks
- Drawing ticks in multiples
- Automatic tick settings
- Setting ticks by the number of data points
- Set scaling of ticks by mathematical functions
- Locating ticks by datetime
- Customizing tick formats
- Removing tick labels
- Fixing labels
- Setting labels with strings
- Setting labels with user-defined functions
- Formatting axes by numerical values
- Setting label sizes
- Trying out the ticker locator and formatter
- Rotating tick labels
- Axes
- Nonlinear axis
- Logarithmic scale
- Changing the base of the log scale
- Advanced example
- Symmetrical logarithmic scale
- Logit scale
- Using style sheets
- Applying a style sheet
- Resetting to default styles
- Customizing a style sheet
- Title and legend
- Adding a title to your figure
- Adding a legend
- Test your skills
- Summary
- Figure Layout and Annotations
- Adjusting the layout
- Adjusting the size of the figure
- Adjusting spines
- Adding subplots
- Adding subplots using pyplot.subplot
- Using pyplot.subplots() to specify handles
- Sharing axes between subplots
- Adjusting margins
- Setting dimensions when adding subplot axes with figure.add_axes
- Modifying subplot axes dimensions via pyplot.subplots_adjust
- Aligning subplots with pyplot.tight_layout
- Auto-aligning figure elements with pyplot.tight_layout
- Stacking subplots of different dimensions with subplot2grid
- Drawing inset plots
- Drawing a basic inset plot
- Using inset_axes
- Annotations
- Adding text annotations
- Adding text and arrows with axis.annotate
- Adding a textbox with axis.text
- Adding arrows
- Labeling data values on a bar chart
- Adding graphical annotations
- Adding shapes
- Adding image annotations
- Summary
- Visualizing Online Data
- Typical API data formats
- CSV
- JSON
- XML
- Introducing pandas
- Importing online population data in the CSV format
- Importing online financial data in the JSON format
- Visualizing the trend of data
- Area chart and stacked area chart
- Introducing Seaborn
- Visualizing univariate distribution
- Bar chart in Seaborn
- Histogram and distribution fitting in Seaborn
- Visualizing a bivariate distribution
- Scatter plot in Seaborn
- Visualizing categorical data
- Categorical scatter plot
- Strip plot and swarm plot
- Box plot and violin plot
- Controlling Seaborn figure aesthetics
- Preset themes
- Removing spines from the figure
- Changing the size of the figure
- Fine-tuning the style of the figure
- More about colors
- Color scheme and color palettes
- Summary
- Visualizing Multivariate Data
- Getting End-of-Day (EOD) stock data from Quandl
- Grouping the companies by industry
- Converting the date to a supported format
- Getting the percentage change of the closing price
- Two-dimensional faceted plots
- Factor plot in Seaborn
- Faceted grid in Seaborn
- Pair plot in Seaborn
- Other two-dimensional multivariate plots
- Heatmap in Seaborn
- Candlestick plot in matplotlib.finance
- Visualizing various stock market indicators
- Building a comprehensive stock chart
- Three-dimensional (3D) plots
- 3D scatter plot
- 3D bar chart
- Caveats of Matplotlib 3D
- Summary
- Adding Interactivity and Animating Plots
- Scraping information from websites
- Non-interactive backends
- Interactive backends
- Tkinter-based backend
- Interactive backend for Jupyter Notebook
- Plot.ly-based backend
- Creating animated plots
- Installation of FFmpeg
- Creating animations
- Summary
- A Practical Guide to Scientific Plotting
- General rules of effective visualization
- Planning your figure
- Do we need the plot?
- Choosing the right plot
- Targeting your audience
- Crafting your graph
- The science of visual perception
- The Gestalt principles of visual perception
- Getting organized
- Ordering plots and data series logically
- Grouping
- Giving emphasis and avoiding clutter
- Color and hue
- Size and weight
- Spacing
- Typography
- Use minimal marker shapes
- Styling plots for slideshows posters and journal articles
- Display time
- Space allowed
- Distance from the audience
- Adaptations
- Summary of styling plots for slideshows posters and journal articles
- Visualizing statistical data more intuitively
- Stacked bar chart and layered histogram
- Replacing bar charts with mean-and-error plots
- Indicating statistical significance
- Methods for dimensions reduction
- Principal Component Analysis (PCA)
- t-distributed Stochastic Neighbor Embedding (t-SNE)
- Summary
- Exploratory Data Analytics and Infographics
- Visualizing population health information
- Map-based visualization for geographical data
- Combining geographical and population health data
- Survival data analysis on cancer
- Summary 更新時間:2021-07-02 19:35:17
推薦閱讀
- Learning NServiceBus(Second Edition)
- Mobile Web Performance Optimization
- Visual C++程序設計學習筆記
- Monkey Game Development:Beginner's Guide
- Flink SQL與DataStream入門、進階與實戰
- Java編程指南:基礎知識、類庫應用及案例設計
- SEO實戰密碼
- Practical Game Design
- HTML5入門經典
- 一塊面包板玩轉Arduino編程
- Learning Modular Java Programming
- Go語言入門經典
- 微前端設計與實現
- Visual C++程序設計與項目實踐
- 深入理解Java虛擬機:JVM高級特性與最佳實踐
- R語言編程基礎
- 零基礎入門Python數據分析與機器學習
- Oracle 11g寶典
- The C++ Workshop
- Java程序員面試筆試真題庫
- RStudio for R Statistical Computing Cookbook
- LLVM Essentials
- C語言編程兵書
- Python Machine Learning By Example
- PHP編程入門指南(全2冊)
- Vue.js 2.x by Example
- Arduino iOS Blueprints
- Hands-On Deep Learning with TensorFlow
- GPU編程實戰(基于Python和CUDA)
- 以用戶為中心的軟件設計:打造用戶友好型應用的有效方法和準則