首頁 > 計算機網絡 >
編程語言與程序設計
> Statistical Application Development with R and Python(Second Edition)最新章節目錄
舉報

會員
Statistical Application Development with R and Python(Second Edition)
最新章節:
Index
IfyouwanttohaveabriefunderstandingofthenatureofdataandperformadvancedstatisticalanalysisusingbothRandPython,thenthisbookiswhatyouneed.Nopriorknowledgeisrequired.Aspiringdatascientist,RuserstryingtolearnPythonandviceversa
目錄(80章)
倒序
- 封面
- 書名頁
- Statistical Application Development with R and Python - Second Edition
- Credits
- About the Author
- Acknowledgment
- About the Reviewers
- www.PacktPub.com
- eBooks discount offers and more
- Customer Feedback
- Preface
- What this book covers
- What you need for this book
- Who this book is for
- Conventions
- Reader feedback
- Customer support
- Chapter 1. Data Characteristics
- Questionnaire and its components
- Experiments with uncertainty in computer science
- Installing and setting up R
- Using R packages
- Python installation and setup
- IDEs for R and Python
- The companion code bundle
- Discrete distributions
- Continuous distributions
- Summary
- Chapter 2. Import/Export Data
- Packages and settings – R and Python
- Understanding data.frame and other formats
- Using utils and the foreign packages
- Exporting data/graphs
- Pop quiz
- Summary
- Chapter 3. Data Visualization
- Packages and settings – R and Python
- Visualization techniques for categorical data
- Visualization techniques for continuous variable data
- Pareto chart
- A brief peek at ggplot2
- Summary
- Chapter 4. Exploratory Analysis
- Packages and settings – R and Python
- Essential summary statistics
- Techniques for exploratory analysis
- Summary
- Chapter 5. Statistical Inference
- Packages and settings – R and Python
- Maximum likelihood estimator
- Confidence intervals
- Hypothesis testing
- Summary
- Chapter 6. Linear Regression Analysis
- Packages and settings - R and Python
- The essence of regression
- The simple linear regression model
- Multiple linear regression model
- Regression diagnostics
- Model selection
- Summary
- Chapter 7. Logistic Regression Model
- Packages and settings – R and Python
- Model validation and diagnostics
- Logistic regression for the German credit screening dataset
- Summary
- Chapter 8. Regression Models with Regularization
- Packages and settings – R and Python
- Regression spline
- Ridge regression for linear models
- Summary
- Chapter 9. Classification and Regression Trees
- Packages and settings – R and Python
- Splitting the data
- Summary
- Chapter 10. CART and Beyond
- Packages and settings – R and Python
- Understanding bagging
- Summary
- Index 更新時間:2021-07-02 18:44:27
推薦閱讀
- Dynamics 365 for Finance and Operations Development Cookbook(Fourth Edition)
- Modular Programming with Python
- 基于差分進化的優化方法及應用
- Securing WebLogic Server 12c
- 飛槳PaddlePaddle深度學習實戰
- AppInventor實踐教程:Android智能應用開發前傳
- ServiceNow:Building Powerful Workflows
- Spring MVC+MyBatis開發從入門到項目實踐(超值版)
- Kubernetes進階實戰
- Python大規模機器學習
- Getting Started with hapi.js
- Python趣味創意編程
- 面向物聯網的Android應用開發與實踐
- MATLAB計算機視覺實戰
- Visual FoxPro數據庫程序設計
- Mastering VMware vSphere Storage
- Python深度學習:基于PyTorch
- 亮劍C#項目開發案例導航
- Spring Cloud微服務架構開發實戰
- C++程序設計教程(第3版)(通用版)
- 編程改變生活:用Python提升你的能力(基礎篇·微課視頻版)
- PHP 程序員面試筆試真題庫
- PhoneGap Essentials
- RT-Thread內核實現與應用開發實戰指南:基于STM32
- C#網絡應用編程(第3版)
- Unity 5.x Shaders and Effects Cookbook
- Getting Started with PhantomJS
- Puppet 5 Essentials(Third Edition)
- MATLAB從基礎到精通
- STM32開發實戰:LabVIEW卷