首頁 > 計算機網絡 >
編程語言與程序設計
> Statistical Application Development with R and Python(Second Edition)最新章節目錄
舉報

會員
Statistical Application Development with R and Python(Second Edition)
最新章節:
Index
IfyouwanttohaveabriefunderstandingofthenatureofdataandperformadvancedstatisticalanalysisusingbothRandPython,thenthisbookiswhatyouneed.Nopriorknowledgeisrequired.Aspiringdatascientist,RuserstryingtolearnPythonandviceversa
目錄(80章)
倒序
- 封面
- 書名頁
- Statistical Application Development with R and Python - Second Edition
- Credits
- About the Author
- Acknowledgment
- About the Reviewers
- www.PacktPub.com
- eBooks discount offers and more
- Customer Feedback
- Preface
- What this book covers
- What you need for this book
- Who this book is for
- Conventions
- Reader feedback
- Customer support
- Chapter 1. Data Characteristics
- Questionnaire and its components
- Experiments with uncertainty in computer science
- Installing and setting up R
- Using R packages
- Python installation and setup
- IDEs for R and Python
- The companion code bundle
- Discrete distributions
- Continuous distributions
- Summary
- Chapter 2. Import/Export Data
- Packages and settings – R and Python
- Understanding data.frame and other formats
- Using utils and the foreign packages
- Exporting data/graphs
- Pop quiz
- Summary
- Chapter 3. Data Visualization
- Packages and settings – R and Python
- Visualization techniques for categorical data
- Visualization techniques for continuous variable data
- Pareto chart
- A brief peek at ggplot2
- Summary
- Chapter 4. Exploratory Analysis
- Packages and settings – R and Python
- Essential summary statistics
- Techniques for exploratory analysis
- Summary
- Chapter 5. Statistical Inference
- Packages and settings – R and Python
- Maximum likelihood estimator
- Confidence intervals
- Hypothesis testing
- Summary
- Chapter 6. Linear Regression Analysis
- Packages and settings - R and Python
- The essence of regression
- The simple linear regression model
- Multiple linear regression model
- Regression diagnostics
- Model selection
- Summary
- Chapter 7. Logistic Regression Model
- Packages and settings – R and Python
- Model validation and diagnostics
- Logistic regression for the German credit screening dataset
- Summary
- Chapter 8. Regression Models with Regularization
- Packages and settings – R and Python
- Regression spline
- Ridge regression for linear models
- Summary
- Chapter 9. Classification and Regression Trees
- Packages and settings – R and Python
- Splitting the data
- Summary
- Chapter 10. CART and Beyond
- Packages and settings – R and Python
- Understanding bagging
- Summary
- Index 更新時間:2021-07-02 18:44:27
推薦閱讀
- iOS面試一戰到底
- Flink SQL與DataStream入門、進階與實戰
- 精通搜索分析
- Wireshark Network Security
- C語言程序設計
- 名師講壇:Java微服務架構實戰(SpringBoot+SpringCloud+Docker+RabbitMQ)
- Apache Spark 2.x for Java Developers
- Linux:Embedded Development
- Instant Lucene.NET
- 玩轉.NET Micro Framework移植:基于STM32F10x處理器
- Visual Basic程序設計實驗指導及考試指南
- Visual C#(學習筆記)
- Android從入門到精通
- Android開發權威指南(第二版)
- 面向對象分析與設計(第3版)
- Oracle API Management 12c Implementation
- Visual C++網絡編程教程(Visual Studio 2010平臺)
- ArcGIS Blueprints
- TensorFlow+Keras深度學習算法原理與編程實戰
- Selenium WebDriver自動化測試完全指南
- 構建跨平臺APP:響應式UI設計入門
- 計算機邏輯設計
- 大話統計學(溢彩實訓版):基于R語言+中文統計工具
- Multithreading with C# Cookbook(Second Edition)
- Python Web Scraping(Second Edition)
- PhoneGap 3 Beginner's Guide
- 從零開始:HTML5+CSS3快速入門教程
- 鮮活的數據:數據可視化指南
- Developing Microservices with Node.js
- 陪孩子像搭積木一樣學編程(Python真好玩+Scratch趣味編程)(全2冊)