目錄(106章)
倒序
- coverpage
- Title Page
- Copyright
- Practical Time Series Analysis
- Credits
- About the Authors
- About the Reviewer
- www.PacktPub.com
- Why subscribe?
- Customer Feedback
- Preface
- What this book covers
- What you need for this book
- Who this book is for
- Conventions
- Reader feedback
- Customer support
- Downloading the example code
- Errata
- Piracy
- Questions
- Introduction to Time Series
- Different types of data
- Cross-sectional data
- Time series data
- Panel data
- Internal structures of time series
- General trend
- Seasonality
- Run sequence plot
- Seasonal sub series plot
- Multiple box plots
- Cyclical changes
- Unexpected variations
- Models for time series analysis
- Zero mean models
- Random walk
- Trend models
- Seasonality models
- Autocorrelation and Partial autocorrelation
- Summary
- Understanding Time Series Data
- Advanced processing and visualization of time series data
- Resampling time series data
- Group wise aggregation
- Moving statistics
- Stationary processes
- Differencing
- First-order differencing
- Second-order differencing
- Seasonal differencing
- Augmented Dickey-Fuller test
- Time series decomposition
- Moving averages
- Moving averages and their smoothing effect
- Seasonal adjustment using moving average
- Weighted moving average
- Time series decomposition using moving averages
- Time series decomposition using statsmodels.tsa
- Summary
- Exponential Smoothing based Methods
- Introduction to time series smoothing
- First order exponential smoothing
- Second order exponential smoothing
- Modeling higher-order exponential smoothing
- Summary
- Auto-Regressive Models
- Auto-regressive models
- Moving average models
- Building datasets with ARMA
- ARIMA
- Confidence interval
- Summary
- Deep Learning for Time Series Forecasting
- Multi-layer perceptrons
- Training MLPs
- MLPs for time series forecasting
- Recurrent neural networks
- Bi-directional recurrent neural networks
- Deep recurrent neural networks
- Training recurrent neural networks
- Solving the long-range dependency problem
- Long Short Term Memory
- Gated Recurrent Units
- Which one to use - LSTM or GRU?
- Recurrent neural networks for time series forecasting
- Convolutional neural networks
- 2D convolutions
- 1D convolution
- 1D convolution for time series forecasting
- Summary
- Getting Started with Python
- Installation
- Python installers
- Running the examples
- Basic data types
- List tuple and set
- Strings
- Maps
- Keywords and functions
- Iterators iterables and generators
- Iterators
- Iterables
- Generators
- Classes and objects
- Summary 更新時(shí)間:2021-07-08 10:18:47
推薦閱讀
- Getting Started with Citrix XenApp? 7.6
- Servlet/JSP深入詳解
- Mastering PHP Design Patterns
- SEO實(shí)戰(zhàn)密碼
- Mastering AndEngine Game Development
- Python機(jī)器學(xué)習(xí)經(jīng)典實(shí)例
- 51單片機(jī)C語言開發(fā)教程
- “笨辦法”學(xué)C語言
- Hack與HHVM權(quán)威指南
- 計(jì)算語言學(xué)導(dǎo)論
- Mastering VMware vSphere Storage
- Selenium WebDriver自動(dòng)化測(cè)試完全指南
- Unity3D高級(jí)編程:主程手記
- 區(qū)塊鏈社會(huì):區(qū)塊鏈助力國(guó)家治理能力現(xiàn)代化
- 架構(gòu)寶典
- jQuery權(quán)威指南(第2版)
- OpenCV By Example
- 深入理解ElasticSearch
- 云原生時(shí)代的CoreDNS學(xué)習(xí)指南
- Python大數(shù)據(jù)分析算法與實(shí)例
- Learning Sinatra
- SAP Lumira Essentials
- R的極客理想:高級(jí)開發(fā)篇
- 零基礎(chǔ)學(xué)FPGA設(shè)計(jì):理解硬件編程思想
- C#代碼整潔之道:代碼重構(gòu)與性能提升
- Go:Building Web Applications
- Jenkins 2權(quán)威指南
- Spring微服務(wù)架構(gòu)設(shè)計(jì)(第2版)
- Python與數(shù)據(jù)科學(xué)
- JavaScript前端開發(fā)案例教程