舉報(bào)

會(huì)員
Big Data Analysis with Python
最新章節(jié):
Chapter 08: Creating a Full Analysis Report
Processingbigdatainrealtimeischallengingduetoscalability,informationinconsistency,andfaulttolerance.BigDataAnalysiswithPythonteachesyouhowtousetoolsthatcancontrolthisdataavalancheforyou.Withthisbook,you'lllearnpracticaltechniquestoaggregatedataintousefuldimensionsforposterioranalysis,extractstatisticalmeasurements,andtransformdatasetsintofeaturesforothersystems.ThebookbeginswithanintroductiontodatamanipulationinPythonusingpandas.You'llthengetfamiliarwithstatisticalanalysisandplottingtechniques.Withmultiplehands-onactivitiesinstore,you'llbeabletoanalyzedatathatisdistributedonseveralcomputersbyusingDask.Asyouprogress,you'llstudyhowtoaggregatedataforplotswhentheentiredatacannotbeaccommodatedinmemory.You'llalsoexploreHadoop(HDFSandYARN),whichwillhelpyoutacklelargerdatasets.ThebookalsocoversSparkandexplainshowitinteractswithothertools.Bytheendofthisbook,you'llbeabletobootstrapyourownPythonenvironment,processlargefiles,andmanipulatedatatogeneratestatistics,metrics,andgraphs.
目錄(73章)
倒序
- 封面
- 版權(quán)頁
- Preface
- Chapter 1 The Python Data Science Stack
- Introduction
- Python Libraries and Packages
- Using Pandas
- Data Type Conversion
- Aggregation and Grouping
- Exporting Data from Pandas
- Visualization with Pandas
- Summary
- Chapter 2 Statistical Visualizations
- Introduction
- Types of Graphs and When to Use Them
- Components of a Graph
- Seaborn
- Which Tool Should Be Used?
- Types of Graphs
- Pandas DataFrames and Grouped Data
- Changing Plot Design: Modifying Graph Components
- Exporting Graphs
- Summary
- Chapter 3 Working with Big Data Frameworks
- Introduction
- Hadoop
- Spark
- Writing Parquet Files
- Handling Unstructured Data
- Summary
- Chapter 4 Diving Deeper with Spark
- Introduction
- Getting Started with Spark DataFrames
- Writing Output from Spark DataFrames
- Exploring Spark DataFrames
- Data Manipulation with Spark DataFrames
- Graphs in Spark
- Summary
- Chapter 5 Handling Missing Values and Correlation Analysis
- Introduction
- Setting up the Jupyter Notebook
- Missing Values
- Handling Missing Values in Spark DataFrames
- Correlation
- Summary
- Chapter 6 Exploratory Data Analysis
- Introduction
- Defining a Business Problem
- Translating a Business Problem into Measurable Metrics and Exploratory Data Analysis (EDA)
- Structured Approach to the Data Science Project Life Cycle
- Summary
- Chapter 7 Reproducibility in Big Data Analysis
- Introduction
- Reproducibility with Jupyter Notebooks
- Gathering Data in a Reproducible Way
- Code Practices and Standards
- Avoiding Repetition
- Summary
- Chapter 8 Creating a Full Analysis Report
- Introduction
- Reading Data in Spark from Different Data Sources
- SQL Operations on a Spark DataFrame
- Generating Statistical Measurements
- Summary
- Appendix
- Chapter 01: The Python Data Science Stack
- Chapter 02: Statistical Visualizations Using Matplotlib and Seaborn
- Chapter 03: Working with Big Data Frameworks
- Chapter 04: Diving Deeper with Spark
- Chapter 05: Missing Value Handling and Correlation Analysis in Spark
- Chapter 6: Business Process Definition and Exploratory Data Analysis
- Chapter 07: Reproducibility in Big Data Analysis
- Chapter 08: Creating a Full Analysis Report 更新時(shí)間:2021-06-11 13:46:55
推薦閱讀
- 大數(shù)據(jù)管理系統(tǒng)
- 圖解PLC控制系統(tǒng)梯形圖和語句表
- 大數(shù)據(jù)時(shí)代的數(shù)據(jù)挖掘
- Pig Design Patterns
- 機(jī)器學(xué)習(xí)流水線實(shí)戰(zhàn)
- ESP8266 Home Automation Projects
- 工業(yè)機(jī)器人安裝與調(diào)試
- Hands-On Dashboard Development with QlikView
- 基于RPA技術(shù)財(cái)務(wù)機(jī)器人的應(yīng)用與研究
- Mastering Predictive Analytics with scikit:learn and TensorFlow
- 深度學(xué)習(xí)原理與 TensorFlow實(shí)踐
- Natural Language Processing and Computational Linguistics
- Puppet 3 Beginner’s Guide
- 計(jì)算智能算法及其生產(chǎn)調(diào)度應(yīng)用
- 新一代人工智能與語音識(shí)別
- Kubernetes on AWS
- Microsoft Power BI Complete Reference
- Apache Spark Machine Learning Blueprints
- ASP.NET 4.0 MVC敏捷開發(fā)給力起飛
- 仿蛇機(jī)器人的設(shè)計(jì)與制作
- INSTANT Oracle GoldenGate
- Learning QGIS(Third Edition)
- 操作系統(tǒng)及網(wǎng)絡(luò)應(yīng)用技術(shù)
- 為什么
- 特效制作
- Spark編程基礎(chǔ)
- 電子商務(wù)網(wǎng)站設(shè)計(jì)與開發(fā)
- Red Hat Enterprise Linux 6從入門到精通
- Artificial Vision and Language Processing for Robotics
- Troubleshooting vSphere Storage