舉報

會員
Applied Supervised Learning with Python
最新章節(jié):
Chapter 6: Model Evaluation
Machinelearning—theabilityofamachinetogiverightanswersbasedoninputdata—hasrevolutionizedthewaywedobusiness.AppliedSupervisedLearningwithPythonprovidesarichunderstandingofhowyoucanapplymachinelearningtechniquesinyourdatascienceprojectsusingPython.You'llexploreJupyterNotebooks,thetechnologyusedcommonlyinacademicandcommercialcircleswithin-linecoderunningsupport.Withthehelpoffunexamples,you'llgainexperienceworkingonthePythonmachinelearningtoolkit—fromperformingbasicdatacleaningandprocessingtoworkingwitharangeofregressionandclassificationalgorithms.Onceyou’vegraspedthebasics,you'lllearnhowtobuildandtrainyourownmodelsusingadvancedtechniquessuchasdecisiontrees,ensemblemodeling,validation,anderrormetrics.You'llalsolearndatavisualizationtechniquesusingpowerfulPythonlibrariessuchasMatplotlibandSeaborn.Thisbookalsocoversensemblemodelingandrandomforestclassifiersalongwithothermethodsforcombiningresultsfrommultiplemodels,andconcludesbydelvingintocross-validationtotestyouralgorithmandcheckhowwellthemodelworksonunseendata.Bytheendofthisbook,you'llbeequippedtonotonlyworkwithmachinelearningalgorithms,butalsobeabletocreatesomeofyourown!
目錄(51章)
倒序
- 封面
- 版權(quán)頁
- Preface
- About the Book
- Chapter 1 Python Machine Learning Toolkit
- Introduction
- Supervised Machine Learning
- Jupyter Notebooks
- pandas
- Data Quality Considerations
- Summary
- Chapter 2 Exploratory Data Analysis and Visualization
- Introduction
- Summary Statistics and Central Values
- Missing Values
- Distribution of Values
- Relationships within the Data
- Summary
- Chapter 3 Regression Analysis
- Introduction
- Regression and Classification Problems
- Linear Regression
- Multiple Linear Regression
- Autoregression Models
- Summary
- Chapter 4 Classification
- Introduction
- Linear Regression as a Classifier
- Logistic Regression
- Classification Using K-Nearest Neighbors
- Classification Using Decision Trees
- Summary
- Chapter 5 Ensemble Modeling
- Introduction
- Overfitting and Underfitting
- Bagging
- Boosting
- Summary
- Chapter 6 Model Evaluation
- Introduction
- Evaluation Metrics
- Splitting the Dataset
- Performance Improvement Tactics
- Summary
- Appendix
- Chapter 1: Python Machine Learning Toolkit
- Chapter 2: Exploratory Data Analysis and Visualization
- Chapter 3: Regression Analysis
- Chapter 4: Classification
- Chapter 5: Ensemble Modeling
- Chapter 6: Model Evaluation 更新時間:2021-06-11 13:45:00
推薦閱讀
- 數(shù)據(jù)科學(xué)實戰(zhàn)手冊(R+Python)
- OpenCV實例精解
- Visual C++實例精通
- Practical DevOps
- Blender 3D Incredible Machines
- Cocos2d-x學(xué)習(xí)筆記:完全掌握Lua API與游戲項目開發(fā) (未來書庫)
- UVM實戰(zhàn)
- 學(xué)習(xí)OpenCV 4:基于Python的算法實戰(zhàn)
- PHP+MySQL+Dreamweaver動態(tài)網(wǎng)站開發(fā)從入門到精通(第3版)
- Instant Lucene.NET
- Modernizing Legacy Applications in PHP
- Python編程快速上手2
- Kohana 3.0 Beginner's Guide
- RESTful Web API Design with Node.js
- 一覽眾山小:ASP.NET Web開發(fā)修行實錄
- INSTANT EaselJS Starter
- Unity3D高級編程:主程手記
- Kali Linux Wireless Penetration Testing Essentials
- Application Testing with Capybara
- Visual C#網(wǎng)絡(luò)編程
- 軟件工程實用教程
- 數(shù)字圖像處理與機器視覺:Visual C++與Matlab實現(xiàn)(第2版)
- Web 3中的零知識證明
- 給孩子的極簡Python編程書(全4冊)
- Mastering Python Forensics
- OAuth 2.0 Cookbook
- Kali Linux:An Ethical Hacker's Cookbook
- 智能優(yōu)化算法及其MATLAB實例(第3版)
- C#碼農(nóng)筆記:從第一行代碼到項目實戰(zhàn)
- 機器學(xué)習(xí)與深度學(xué)習(xí)(Python版·微課視頻版)