舉報

會員
The Applied Artificial Intelligence Workshop
Youalreadyknowthatartificialintelligence(AI)andmachinelearning(ML)arepresentinmanyofthetoolsyouuseinyourdailyroutine.ButdoyouwanttobeabletocreateyourownAIandMLmodelsanddevelopyourskillsinthesedomainstokickstartyourAIcareer?TheAppliedArtificialIntelligenceWorkshopgetsyoustartedwithapplyingAIwiththehelpofpracticalexercisesandusefulexamples,allputtogethercleverlytohelpyougaintheskillstotransformyourcareer.Thebookbeginsbyteachingyouhowtopredictoutcomesusingregression.You’llthenlearnhowtoclassifydatausingtechniquessuchask-nearestneighbor(KNN)andsupportvectormachine(SVM)classifiers.Asyouprogress,you'llexplorevariousdecisiontreesbylearninghowtobuildareliabledecisiontreemodelthatcanhelpyourcompanyfindcarsthatclientsarelikelytobuy.Thefinalchapterswillintroduceyoutodeeplearningandneuralnetworks.Throughvariousactivities,suchaspredictingstockpricesandrecognizinghandwrittendigits,you'lllearnhowtotrainandimplementconvolutionalneuralnetworks(CNNs)andrecurrentneuralnetworks(RNNs).BytheendofthisappliedAIbook,you'llhavelearnedhowtopredictoutcomesandtrainneuralnetworksandbeabletousevarioustechniquestodevelopAIandMLmodels.
目錄(65章)
倒序
- 封面
- 版權信息
- Preface
- 1. Introduction to Artificial Intelligence
- Introduction
- Fields and Applications of AI
- AI Tools and Learning Models
- The Role of Python in AI
- Python for Game AI
- Heuristics
- Pathfinding with the A* Algorithm
- Introducing the A* Algorithm
- Game AI with the Minmax Algorithm and Alpha-Beta Pruning
- The Minmax Algorithm
- DRYing Up the Minmax Algorithm – the NegaMax Algorithm
- Summary
- 2. An Introduction to Regression
- Introduction
- Linear Regression with One Variable
- Linear Regression with Multiple Variables
- Polynomial and Support Vector Regression
- Support Vector Regression
- Summary
- 3. An Introduction to Classification
- Introduction
- The Fundamentals of Classification
- Data Preprocessing
- The K-Nearest Neighbors Classifier
- Classification with Support Vector Machines
- Summary
- 4. An Introduction to Decision Trees
- Introduction
- Decision Trees
- The Confusion Matrix
- Random Forest Classifier
- Summary
- 5. Artificial Intelligence: Clustering
- Introduction
- Defining the Clustering Problem
- Clustering Approaches
- The K-Means Algorithm
- The Mean Shift Algorithm
- Clustering Performance Evaluation
- Summary
- 6. Neural Networks and Deep Learning
- Introduction
- Artificial Neurons
- Neurons in TensorFlow
- Neural Network Architecture
- Activation Functions
- Forward Propagation and the Loss Function
- Backpropagation
- Optimizers and the Learning Rate
- Regularization
- Deep Learning
- Computer Vision and Image Classification
- Recurrent Neural Networks (RNNs)
- Summary
- Appendix
- 1. Introduction to Artificial Intelligence
- 2. An Introduction to Regression
- 3. An Introduction to Classification
- 4. An Introduction to Decision Trees
- 5. Artificial Intelligence: Clustering
- 6. Neural Networks and Deep Learning 更新時間:2021-06-18 18:25:27
推薦閱讀
- Aftershot Pro:Non-destructive photo editing and management
- 電腦維護與故障排除傻瓜書(Windows 10適用)
- 電腦常見問題與故障排除
- 極簡Spring Cloud實戰
- 計算機組裝與系統配置
- Getting Started with Qt 5
- scikit-learn:Machine Learning Simplified
- Practical Machine Learning with R
- 電腦高級維修及故障排除實戰
- OpenGL Game Development By Example
- Blender Game Engine:Beginner's Guide
- 基于網絡化教學的項目化單片機應用技術
- The Artificial Intelligence Infrastructure Workshop
- 單片機項目設計教程
- Angular 6 by Example
- 計算機組裝、維護與維修項目教程
- 從企業級開發到云原生微服務:Spring Boot實戰
- 詳解FPGA:人工智能時代的驅動引擎
- 數據恢復與硬盤修理
- 微處理器及控制電路識圖
- FPGA設計技巧與案例開發詳解
- 精選單片機設計與制作30例
- 計算機技能大賽指導:調試維修
- Vue.js 3 Cookbook
- Building Smart LEGO MINDSTORMS EV3 Robots
- 單片機原理及應用(第2版)
- Mastering Lumion 3D
- 小創客輕松玩轉micro:bit
- 量子霸權
- 設計模式就該這樣學:基于經典框架源碼和真實業務場景