舉報

會員
The Unsupervised Learning Workshop
最新章節:
9. Hotspot Analysis
DoyoufinditdifficulttounderstandhowpopularcompanieslikeWhatsAppandAmazonfindvaluableinsightsfromlargeamountsofunorganizeddata?TheUnsupervisedLearningWorkshopwillgiveyoutheconfidencetodealwithclutteredandunlabeleddatasets,usingunsupervisedalgorithmsinaneasyandinteractivemanner.Thebookstartsbyintroducingthemostpopularclusteringalgorithmsofunsupervisedlearning.You'llfindouthowhierarchicalclusteringdiffersfromk-means,alongwithunderstandinghowtoapplyDBSCANtohighlycomplexandnoisydata.Movingahead,you'lluseautoencodersforefficientdataencoding.Asyouprogress,you’lluset-SNEmodelstoextracthigh-dimensionalinformationintoalowerdimensionforbettervisualization,inadditiontoworkingwithtopicmodelingforimplementingnaturallanguageprocessing(NLP).Inlaterchapters,you’llfindkeyrelationshipsbetweencustomersandbusinessesusingMarketBasketAnalysis,beforegoingontouseHotspotAnalysisforestimatingthepopulationdensityofanarea.Bytheendofthisbook,you’llbeequippedwiththeskillsyouneedtoapplyunsupervisedalgorithmsoncluttereddatasetstofindusefulpatternsandinsights.
目錄(72章)
倒序
- 封面
- 版權信息
- Preface
- Introduction
- Unsupervised Learning versus Supervised Learning
- Clustering
- Introduction to k-means Clustering
- Summary
- 2. Hierarchical Clustering
- Introduction
- Clustering Refresher
- The Organization of the Hierarchy
- Introduction to Hierarchical Clustering
- Linkage
- Agglomerative versus Divisive Clustering
- k-means versus Hierarchical Clustering
- Summary
- 3. Neighborhood Approaches and DBSCAN
- Introduction
- Clusters as Neighborhoods
- Introduction to DBSCAN
- DBSCAN versus k-means and Hierarchical Clustering
- Summary
- 4. Dimensionality Reduction Techniques and PCA
- Introduction
- What Is Dimensionality Reduction?
- Overview of Dimensionality Reduction Techniques
- Principal Component Analysis
- Summary
- 5. Autoencoders
- Introduction
- Fundamentals of Artificial Neural Networks
- Autoencoders
- Summary
- 6. t-Distributed Stochastic Neighbor Embedding
- Introduction
- The MNIST Dataset
- Stochastic Neighbor Embedding (SNE)
- t-Distributed SNE
- Interpreting t-SNE Plots
- Summary
- 7. Topic Modeling
- Introduction
- Topic Models
- Cleaning Text Data
- Latent Dirichlet Allocation
- Non-Negative Matrix Factorization
- Summary
- 8. Market Basket Analysis
- Introduction
- Market Basket Analysis
- Characteristics of Transaction Data
- The Apriori Algorithm
- Association Rules
- Summary
- 9. Hotspot Analysis
- Introduction
- Spatial Statistics
- Kernel Density Estimation
- Hotspot Analysis
- Summary
- Appendix
- 1. Introduction to Clustering
- 2. Hierarchical Clustering
- 3. Neighborhood Approaches and DBSCAN
- 4. Dimensionality Reduction Techniques and PCA
- 5. Autoencoders
- 6. t-Distributed Stochastic Neighbor Embedding
- 7. Topic Modeling
- 8. Market Basket Analysis
- 9. Hotspot Analysis 更新時間:2021-06-18 18:13:09
推薦閱讀
- 觸摸屏實用技術與工程應用
- 用“芯”探核:龍芯派開發實戰
- 電腦組裝與維修從入門到精通(第2版)
- 計算機組裝·維護與故障排除
- Intel FPGA/CPLD設計(高級篇)
- 3ds Max Speed Modeling for 3D Artists
- 計算機維修與維護技術速成
- Apple Motion 5 Cookbook
- Arduino BLINK Blueprints
- 單片機開發與典型工程項目實例詳解
- 龍芯自主可信計算及應用
- Managing Data and Media in Microsoft Silverlight 4:A mashup of chapters from Packt's bestselling Silverlight books
- 單片機技術及應用
- 單片微機原理及應用
- FreeSWITCH Cookbook
- USB應用開發寶典
- 微服務架構實戰:基于Spring Boot、Spring Cloud、Docker
- PIC系列單片機的流碼編程
- Nagios系統監控實踐(原書第2版)
- Sketchbook Pro Digital Painting Essentials
- 微服務容器化開發實戰
- GLSL Essentials
- Mastering Adobe Photoshop Elements 2020
- 歐姆龍CP1H系列PLC完全自學手冊(第二版)
- 單片機技術與項目實踐
- 最新電腦故障排除即時通
- FPGA軟件測試與評價技術
- 全圖解電腦軟硬件維修實用大全(視頻教程版、Windows 10適用)
- 范例學電腦系統安裝與維護
- 常用辦公設備使用與維護