首頁 > 計算機(jī)網(wǎng)絡(luò) >
硬件與維護(hù)
> The Artificial Intelligence Infrastructure Workshop最新章節(jié)目錄
舉報

會員
The Artificial Intelligence Infrastructure Workshop
最新章節(jié):
12. Productionizing Your AI Applications
Socialnetworkingsitesseeanaverageof350millionuploadsdaily-aquantityimpossibleforhumanstoscanandanalyze.OnlyAIcandothisjobattherequiredspeed,andtoleverageanAIapplicationatitsfullpotential,youneedanefficientandscalabledatastoragepipeline.TheArtificialIntelligenceInfrastructureWorkshopwillteachyouhowtobuildandmanageone.TheArtificialIntelligenceInfrastructureWorkshopbeginstakingyouthroughsomereal-worldapplicationsofAI.You’llexplorethelayersofadatalakeandgettogripswithsecurity,scalability,andmaintainability.Withthehelpofhands-onexercises,you’lllearnhowtodefinetherequirementsforAIapplicationsinyourorganization.ThisAIbookwillshowyouhowtoselectadatabaseforyoursystemandruncommonqueriesondatabasessuchasMySQL,MongoDB,andCassandra.You’llalsodesignyourownAItradingsystemtogetafeelofthepipeline-basedarchitecture.AsyoulearntoimplementadeepQ-learningalgorithmtoplaytheCartPolegame,you’llgainhands-onexperiencewithPyTorch.Finally,you’llexplorewaystorunmachinelearningmodelsinproductionaspartofanAIapplication.Bytheendofthebook,you’llhavelearnedhowtobuildanddeployyourownAIsoftwareatscale,usingvarioustools,APIframeworks,andserializationmethods.
目錄(104章)
倒序
- 封面
- 版權(quán)信息
- Preface
- 1. Data Storage Fundamentals
- Introduction
- Problems Solved by Machine Learning
- Optimizing the Storing and Processing of Data for Machine Learning Problems
- Diving into Text Classification
- Looking at Terminology in Text Classification Tasks
- Designing for Scale – Choosing the Right Architecture and Hardware
- Using Vectorized Operations to Analyze Data Fast
- Summary
- 2. Artificial Intelligence Storage Requirements
- Introduction
- Storage Requirements
- Data Layers
- Raw Data
- Historical Data
- Streaming Data
- Analytics Data
- Model Development and Training
- Summary
- 3. Data Preparation
- Introduction
- ETL
- Data Processing Techniques
- Streaming Data
- Summary
- 4. The Ethics of AI Data Storage
- Introduction
- Summary
- 5. Data Stores: SQL and NoSQL Databases
- Introduction
- Database Components
- SQL Databases
- MySQL
- NoSQL Databases
- MongoDB
- Cassandra
- Exploring the Collective Knowledge of Databases
- Summary
- 6. Big Data File Formats
- Introduction
- Common Input Files
- Choosing the Right Format for Your Data
- Introduction to File Formats
- Summary
- 7. Introduction to Analytics Engine (Spark) for Big Data
- Introduction
- Apache Spark
- Apache Spark and Databricks
- Understanding Various Spark Transformations
- Understanding Various Spark Actions
- Best Practices
- Summary
- 8. Data System Design Examples
- Introduction
- The Importance of System Design
- Components to Consider in System Design
- Examining a Pipeline Design for an AI System
- Making a Pipeline System Highly Available
- Summary
- 9. Workflow Management for AI
- Introduction
- Creating Your Data Pipeline
- Challenges in Managing Processes in the Real World
- Automating a Data Pipeline
- Automating Asynchronous Data Pipelines
- Workflow Management with Airflow
- Summary
- 10. Introduction to Data Storage on Cloud Services (AWS)
- Introduction
- Interacting with Cloud Storage
- Getting Started with Cloud Relational Databases
- Introduction to NoSQL Data Stores on the Cloud
- Data in Document Format
- Summary
- 11. Building an Artificial Intelligence Algorithm
- Introduction
- Machine Learning Algorithms
- Model Training
- Gradient Descent
- Getting Started with PyTorch
- Mini-Batch SGD with PyTorch
- Summary
- 12. Productionizing Your AI Applications
- Introduction
- pickle and Flask
- Deploying Models to Production
- Model Execution in Streaming Data Applications
- Summary
- Appendix
- 1. Data Storage Fundamentals
- 2. Artificial Intelligence Storage Requirements
- 3. Data Preparation
- 4. Ethics of AI Data Storage
- 5. Data Stores: SQL and NoSQL Databases
- 6. Big Data File Formats
- 7. Introduction to Analytics Engine (Spark) for Big Data
- 8. Data System Design Examples
- 9. Workflow Management for AI
- 10. Introduction to Data Storage on Cloud Services (AWS)
- 11. Building an Artificial Intelligence Algorithm
- 12. Productionizing Your AI Applications 更新時間:2021-06-11 18:35:51
推薦閱讀
- 深入理解Spring Cloud與實戰(zhàn)
- Learning AngularJS Animations
- 計算機(jī)組裝與系統(tǒng)配置
- 施耐德SoMachine控制器應(yīng)用及編程指南
- Spring Cloud微服務(wù)架構(gòu)實戰(zhàn)
- 龍芯自主可信計算及應(yīng)用
- Intel Edison智能硬件開發(fā)指南:基于Yocto Project
- Neural Network Programming with Java(Second Edition)
- IP網(wǎng)絡(luò)視頻傳輸:技術(shù)、標(biāo)準(zhǔn)和應(yīng)用
- 單片機(jī)項目設(shè)計教程
- Zabbix 4 Network Monitoring
- 嵌入式系統(tǒng)設(shè)計大學(xué)教程(第2版)
- 施耐德M241/251可編程序控制器應(yīng)用技術(shù)
- Hands-On Unsupervised Learning with Python
- Mastering TensorFlow 1.x
- 多媒體技術(shù)與應(yīng)用
- GLSL Essentials
- Getting Started with Python for the Internet of Things
- Hands-On Natural Language Processing with PyTorch 1.x
- 打印機(jī)維修不是事兒(第2版)
- Getting started with IntelliJ IDEA
- CPU自制入門
- 小創(chuàng)客輕松玩轉(zhuǎn)micro:bit
- 基于C語言與Proteus聯(lián)合仿真的單片機(jī)技術(shù)
- 嵌入式系統(tǒng)軟硬件協(xié)同設(shè)計實戰(zhàn)指南:基于Xilinx ZYNQ(第2版)
- Raspberry Pi Computer Architecture Essentials
- FPGA軟件測試與評價技術(shù)
- 零基礎(chǔ)輕松學(xué)修筆記本電腦
- 辦公自動化高級應(yīng)用案例教程
- 數(shù)據(jù)存儲架構(gòu)與技術(shù)(第2版)