首頁(yè) > 計(jì)算機(jī)網(wǎng)絡(luò) >
數(shù)據(jù)庫(kù)
> The Natural Language Processing Workshop最新章節(jié)目錄
舉報(bào)

會(huì)員
The Natural Language Processing Workshop
最新章節(jié):
8. Sentiment Analysis
DoyouwanttolearnhowtocommunicatewithcomputersystemsusingNaturalLanguageProcessing(NLP)techniques,ormakeamachineunderstandhumansentiments?DoyouwanttobuildapplicationslikeSiri,Alexa,orchatbots,evenifyou’veneverdoneitbefore?WithTheNaturalLanguageProcessingWorkshop,youcanexpecttomakeconsistentprogressasabeginner,andgetuptospeedinaninteractiveway,withthehelpofhands-onactivitiesandfunexercises.ThebookstartswithanintroductiontoNLP.You’llstudydifferentapproachestoNLPtasks,andperformexercisesinPythontounderstandtheprocessofpreparingdatasetsforNLPmodels.Next,you’lluseadvancedNLPalgorithmsandvisualizationtechniquestocollectdatasetsfromopenwebsites,andtosummarizeandgeneraterandomtextfromadocument.Inthefinalchapters,you’lluseNLPtocreateachatbotthatdetectspositiveornegativesentimentintextdocumentssuchasmoviereviews.Bytheendofthisbook,you’llbeequippedwiththeessentialNLPtoolsandtechniquesyouneedtosolvecommonbusinessproblemsthatinvolveprocessingtext.
目錄(67章)
倒序
- 封面
- 版權(quán)信息
- Preface
- 1. Introduction to Natural Language Processing
- Introduction
- History of NLP
- Text Analytics and NLP
- Various Steps in NLP
- Word Sense Disambiguation
- Sentence Boundary Detection
- Kick Starting an NLP Project
- Summary
- 2. Feature Extraction Methods
- Introduction
- Types of Data
- Cleaning Text Data
- Feature Extraction from Texts
- Finding Text Similarity – Application of Feature Extraction
- Summary
- 3. Developing a Text Classifier
- Introduction
- Machine Learning
- Supervised Learning
- Developing a Text Classifier
- Building Pipelines for NLP Projects
- Saving and Loading Models
- Summary
- 4. Collecting Text Data with Web Scraping and APIs
- Introduction
- Collecting Data by Scraping Web Pages
- Dealing with Semi-Structured Data
- Summary
- 5. Topic Modeling
- Introduction
- Topic Discovery
- Topic-Modeling Algorithms
- Key Input Parameters for LSA Topic Modeling
- Hierarchical Dirichlet Process (HDP)
- Summary
- 6. Vector Representation
- Introduction
- What Is a Vector?
- Summary
- 7. Text Generation and Summarization
- Introduction
- Generating Text with Markov Chains
- Text Summarization
- Key Input Parameters for TextRank
- Recent Developments in Text Generation and Summarization
- Practical Challenges in Extractive Summarization
- Summary
- 8. Sentiment Analysis
- Introduction
- Tools Used for Sentiment Analysis
- The textblob library
- Understanding Data for Sentiment Analysis
- Training Sentiment Models
- Summary
- Appendix
- 1. Introduction to Natural Language Processing
- 2. Feature Extraction Methods
- 3. Developing a Text Classifier
- 4. Collecting Text Data with Web Scraping and APIs
- 5. Topic Modeling
- 6. Vector Representation
- 7. Text Generation and Summarization
- 8. Sentiment Analysis 更新時(shí)間:2021-06-11 18:39:41
推薦閱讀
- SQL Server 2008數(shù)據(jù)庫(kù)應(yīng)用技術(shù)(第二版)
- Voice Application Development for Android
- 大數(shù)據(jù)可視化
- 辦公應(yīng)用與計(jì)算思維案例教程
- Hadoop大數(shù)據(jù)開發(fā)案例教程與項(xiàng)目實(shí)戰(zhàn)(在線實(shí)驗(yàn)+在線自測(cè))
- HikariCP連接池實(shí)戰(zhàn)
- 數(shù)據(jù)指標(biāo)體系:構(gòu)建方法與應(yīng)用實(shí)踐
- Hands-On Deep Learning for Games
- Unity Game Development Blueprints
- 工業(yè)大數(shù)據(jù)融合體系結(jié)構(gòu)與關(guān)鍵技術(shù)
- AI Crash Course
- 深入理解Flink:實(shí)時(shí)大數(shù)據(jù)處理實(shí)踐
- Learn Selenium
- Scratch Cookbook
- 數(shù)據(jù)庫(kù)高效優(yōu)化:架構(gòu)、規(guī)范與SQL技巧
- Reactive Programming in Kotlin
- 元宇宙基石:Web3.0與分布式存儲(chǔ)
- SQL Server 2008數(shù)據(jù)庫(kù)應(yīng)用技術(shù)(第三版)
- Hands-On Design Patterns with Java
- 零距離接觸云計(jì)算
- 數(shù)字化轉(zhuǎn)型 架構(gòu)與方法
- Access 2007開發(fā)指南(修訂版)
- 數(shù)據(jù)自助服務(wù)實(shí)踐指南:數(shù)據(jù)開放與洞察提效
- 智能數(shù)據(jù)治理:基于大模型、知識(shí)圖譜
- 云計(jì)算虛擬化技術(shù)與應(yīng)用
- 數(shù)據(jù)庫(kù)系統(tǒng)及應(yīng)用(第2版)
- Python數(shù)據(jù)分析
- Metasploit滲透測(cè)試與開發(fā)實(shí)踐指南
- R Deep Learning Essentials
- 分布式數(shù)據(jù)庫(kù):原理與實(shí)踐