舉報

會員
Hands/On Machine Learning with C++
ImplementsupervisedandunsupervisedmachinelearningalgorithmsusingC++librariessuchasPyTorchC++API,Caffe2,Shogun,Shark-ML,mlpack,anddlibwiththehelpofreal-worldexamplesanddatasetsKeyFeatures.Becomefamiliarwithdataprocessing,performancemeasuring,andmodelselectionusingvariousC++libraries.Implementpracticalmachinelearninganddeeplearningtechniquestobuildsmartmodels.DeploymachinelearningmodelstoworkonmobileandembeddeddevicesBookDescriptionC++canmakeyourmachinelearningmodelsrunfasterandmoreefficiently.Thishandyguidewillhelpyoulearnthefundamentalsofmachinelearning(ML),showingyouhowtouseC++librariestogetthemostoutofyourdata.ThisbookmakesmachinelearningwithC++forbeginnerseasywithitsexample-basedapproach,demonstratinghowtoimplementsupervisedandunsupervisedMLalgorithmsthroughreal-worldexamples.Thisbookwillgetyouhands-onwithtuningandoptimizingamodelfordifferentusecases,assistingyouwithmodelselectionandthemeasurementofperformance.You’llcovertechniquessuchasproductrecommendations,ensemblelearning,andanomalydetectionusingmodernC++librariessuchasPyTorchC++API,Caffe2,Shogun,Shark-ML,mlpack,anddlib.Next,you’llexploreneuralnetworksanddeeplearningusingexamplessuchasimageclassificationandsentimentanalysis,whichwillhelpyousolvevariousproblems.Later,you’lllearnhowtohandleproductionanddeploymentchallengesonmobileandcloudplatforms,beforediscoveringhowtoexportandimportmodelsusingtheONNXformat.BytheendofthisC++book,youwillhavereal-worldmachinelearningandC++knowledge,aswellastheskillstouseC++tobuildpowerfulMLsystems.Whatyouwilllearn.ExplorehowtoloadandpreprocessvariousdatatypestosuitableC++datastructures.EmploykeymachinelearningalgorithmswithvariousC++libraries.Understandthegrid-searchapproachtofindthebestparametersforamachinelearningmodel.ImplementanalgorithmforfilteringanomaliesinuserdatausingGaussiandistribution.Improvecollaborativefilteringtodealwithdynamicuserpreferences.UseC++librariesandAPIstomanagemodelstructuresandparameters.ImplementaC++programtosolveimageclassificationtaskswithLeNetarchitectureWhothisbookisforYouwillfindthisC++machinelearningbookusefulifyouwanttogetstartedwithmachinelearningalgorithmsandtechniquesusingthepopularC++language.AswellasbeingausefulfirstcourseinmachinelearningwithC++,thisbookwillalsoappealtodataanalysts,datascientists,andmachinelearningdeveloperswhoarelookingtoimplementdifferentmachinelearningmodelsinproductionusingvarieddatasetsandexamples.WorkingknowledgeoftheC++programminglanguageismandatorytogetstartedwiththisbook.
目錄(31章)
倒序
- coverpage
- Hands-On Machine Learning with C++
- Why subscribe?
- Contributors
- About the author
- About the reviewers
- Packt is searching for authors like you
- Preface
- Who this book is for
- What this book covers
- To get the most out of this book
- Get in touch
- Section 1: Overview of Machine Learning
- Introduction to Machine Learning with C++
- Data Processing
- Measuring Performance and Selecting Models
- Section 2: Machine Learning Algorithms
- Clustering
- Anomaly Detection
- Dimensionality Reduction
- Classification
- Recommender Systems
- Ensemble Learning
- Section 3: Advanced Examples
- Neural Networks for Image Classification
- Sentiment Analysis with Recurrent Neural Networks
- Section 4: Production and Deployment Challenges
- Exporting and Importing Models
- Deploying Models on Mobile and Cloud Platforms
- Other Books You May Enjoy
- Leave a review - let other readers know what you think 更新時間:2021-04-09 23:15:26
推薦閱讀
- Android全埋點解決方案
- 創客電子入門
- 視頻精講:PADS 2007原理圖與布板設計典型實例
- LED照明電路設計100例
- 成像雷達并行仿真優化技術
- 手繪圖說電子電路圖
- 元器件檢測技能零基礎成長
- 移動增值業務網絡及其運營
- RxJava反應式編程
- 數字邏輯電路與系統設計
- Cocos2d-x學習筆記:完全掌握C++ API與游戲項目開發 (未來書庫)
- 網絡設備管理與維護
- 電子技術基礎與技能訓練
- Cadence Allegro SPB 16.3常用功能與應用實例精講
- 數字音頻原理與檢測技術
- 新型手機維修數據速查寶典
- FTTX網絡建設與維護
- 電子工程師自學速成:提高篇
- Android Studio開發實戰:從零基礎到App上線(第2版)
- 數字電路與邏輯設計
- 最新智能手機解鎖與軟件維修速查手冊
- 常用控制電路設計及應用(第2版)
- 復雜場景下圖像與視頻分析
- TD-LTE網絡規劃設計與優化(“十二五”國家重點圖書出版規劃項目)
- 電子設備防腐蝕設計
- LTE無線網絡優化項目教程
- 全光網絡中監測跡原理和應用
- 沖榜!:蘋果應用商店優化(ASO)實戰
- 邊緣計算與算力網絡:5G+AI時代的新型算力平臺與網絡連接
- 多媒體通信技術基礎