舉報

會員
Applied Deep Learning and Computer Vision for Self/Driving Cars
Exploreself-drivingcartechnologyusingdeeplearningandartificialintelligencetechniquesandlibrariessuchasTensorFlow,Keras,andOpenCVKeyFeatures*Buildandtrainpowerfulneuralnetworkmodelstobuildanautonomouscar*Implementcomputervision,deeplearning,andAItechniquestocreateautomotivealgorithms*OvercomethechallengesfacedwhileautomatingdifferentaspectsofdrivingusingmodernPythonlibrariesandarchitecturesBookDescriptionThankstoanumberofrecentbreakthroughs,self-drivingcartechnologyisnowanemergingsubjectinthefieldofartificialintelligenceandhasshifteddatascientists'focustobuildingautonomouscarsthatwilltransformtheautomotiveindustry.Thisbookisacomprehensiveguidetousedeeplearningandcomputervisiontechniquestodevelopautonomouscars.Startingwiththebasicsofself-drivingcars(SDCs),thisbookwilltakeyouthroughthedeepneuralnetworktechniquesrequiredtogetupandrunningwithbuildingyourautonomousvehicle.Onceyouarecomfortablewiththebasics,you'lldelveintoadvancedcomputervisiontechniquesandlearnhowtousedeeplearningmethodstoperformavarietyofcomputervisiontaskssuchasfindinglanelines,improvingimageclassification,andsoon.Youwillexplorethebasicstructureandworkingofasemanticsegmentationmodelandgettogripswithdetectingcarsusingsemanticsegmentation.Thebookalsocoversadvancedapplicationssuchasbehavior-cloningandvehicledetectionusingOpenCV,transferlearning,anddeeplearningmethodologiestotrainSDCstomimichumandriving.Bytheendofthisbook,you'llhavelearnedhowtoimplementavarietyofneuralnetworkstodevelopyourownautonomousvehicleusingmodernPythonlibraries.Whatyouwilllearn*ImplementdeepneuralnetworkfromscratchusingtheKeraslibrary*Understandtheimportanceofdeeplearninginself-drivingcars*GettogripswithfeatureextractiontechniquesinimageprocessingusingtheOpenCVlibrary*Designasoftwarepipelinethatdetectslanelinesinvideos*Implementaconvolutionalneuralnetwork(CNN)imageclassifierfortrafficsignalsigns*Trainandtestneuralnetworksforbehavioral-cloningbydrivingacarinavirtualsimulator*Discovervariousstate-of-the-artsemanticsegmentationandobjectdetectionarchitecturesWhothisbookisforIfyouareadeeplearningengineer,AIresearcher,oranyonelookingtoimplementdeeplearningandcomputervisiontechniquestobuildself-drivingblueprintsolutions,thisbookisforyou.Anyonewhowantstolearnhowvariousautomotive-relatedalgorithmsarebuilt,willalsofindthisbookuseful.Pythonprogrammingexperience,alongwithabasicunderstandingofdeeplearning,isnecessarytogetthemostofthisbook.
目錄(88章)
倒序
- coverpage
- Applied Deep Learning and Computer Vision for Self-Driving Cars
- Why subscribe?
- Contributors
- About the authors
- About the reviewers
- Packt is searching for authors like you
- Preface
- Who this book is for
- What this book covers
- To get the most out of this book
- Get in touch
- Section 1: Deep Learning Foundation and SDC Basics
- The Foundation of Self-Driving Cars
- Introduction to SDCs
- Challenges in current deployments
- Levels of autonomy
- Deep learning and computer vision approaches for SDCs
- Summary
- Dive Deep into Deep Neural Networks
- Diving deep into neural networks
- Understanding neurons and perceptrons
- The workings of ANNs
- Understanding activation functions
- The cost function of neural networks
- Optimizers
- Understanding hyperparameters
- TensorFlow versus Keras
- Summary
- Implementing a Deep Learning Model Using Keras
- Starting work with Keras
- Keras for deep learning
- Building your first deep learning model
- Summary
- Section 2: Deep Learning and Computer Vision Techniques for SDC
- Computer Vision for Self-Driving Cars
- Introduction to computer vision
- Building blocks of an image
- Color space techniques
- Introduction to convolution
- Edge detection and gradient calculation
- Image transformation
- Summary
- Finding Road Markings Using OpenCV
- Finding road markings in an image
- Detecting road markings in a video
- Summary
- Improving the Image Classifier with CNN
- Images in computer format
- Introducing CNNs
- Introduction to handwritten digit recognition
- Summary
- Road Sign Detection Using Deep Learning
- Dataset overview
- Loading the data
- Image exploration
- Data preparation
- Model training
- Model accuracy
- Summary
- Section 3: Semantic Segmentation for Self-Driving Cars
- The Principles and Foundations of Semantic Segmentation
- Introduction to semantic segmentation
- Understanding the semantic segmentation architecture
- Overview of different semantic segmentation architectures
- Summary
- Implementing Semantic Segmentation
- Semantic segmentation in images
- Semantic segmentation in videos
- Summary
- Section 4: Advanced Implementations
- Behavioral Cloning Using Deep Learning
- Neural network for regression
- Behavior cloning using deep learning
- Summary
- Vehicle Detection Using OpenCV and Deep Learning
- What makes YOLO different?
- The YOLO loss function
- The YOLO architecture
- Implementation of YOLO object detection
- Summary
- Next Steps
- SDC sensors
- Introduction to sensor fusion
- Kalman filter
- Summary
- Other Books You May Enjoy
- Leave a review - let other readers know what you think 更新時間:2021-04-09 23:13:26
推薦閱讀
- Moodle 2.0 E/Learning Course Development
- PrestaShop 1.3 Theming – Beginner’s Guide
- Instant Vert.x
- Spring Python 1.1
- CoffeeScript Application Development
- Photoshop+Adobe Camera Raw+Lightroom(攝影后期照片潤飾實戰)
- ABAQUS有限元分析從入門到精通(第3版)
- PS App UI設計從零開始學
- 綁定的藝術:Maya高級角色骨骼綁定技法(第2版)
- Photoshop+Illustrator商業廣告設計從入門到精通(第2版)
- VRP11/3ds Max虛擬現實制作標準實訓教程
- ASP.NET 3.5 Social Networking
- Photoshop 2024從入門到精通
- 中文版Photoshop CS6應用技法教程
- ASP.NET Core 3從入門到實戰
- 手機/電腦雙平臺剪映短視頻后期編輯從新手到高手
- Deep Inside osCommerce: The Cookbook
- 從零開始:Photoshop CS6中文版基礎培訓教程
- 老郵差 Photoshop數碼照片處理技法 圖層篇(修訂版)
- UG NX 11中文版基礎教程
- Agile Web Application Development with Yii1.1 and PHP5
- CAXA軟件應用技術基礎
- Moodle 1.9 Teaching Techniques
- AutoCAD 2011機械設計與制作標準實訓教程
- Illustrator CC 2015課堂實錄
- Drupal 6 Attachment Views
- Node Web Development
- 中文版Photoshop 2022從入門到實戰視頻教程(全彩版)
- AutoCAD 2021官方標準教程
- 中文版SketchUp 2014室內設計完全自學教程